

Investigation of Party Line Voice over Inmarsat's Mobile Packet 10001010101010101111 Data Service (MPDS)

101001010100101010101010001010001101

Rich Deininger, Steve Knapp, Dave Morse, Karl Griep, Samson Million **Tectura and Avaliant** rdeininger@tectura.com

AirTraffic Management

Motivation – Investigate Affordable Party Line Voice

Cost vs. performance

GCNSS Demo

GCNSS Lab

Experiment

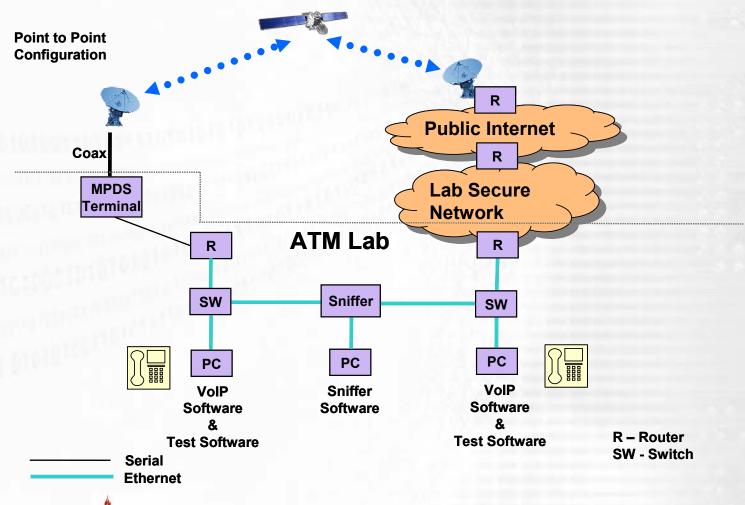
- Current circuit based satcom
 - Long call setup, but good quality from dedicated resources
 - Expensive dedicated resources even when unused
 - Circuit must be dedicated to each participant in the party line
 - Poor party line infrastructure

Packet switched

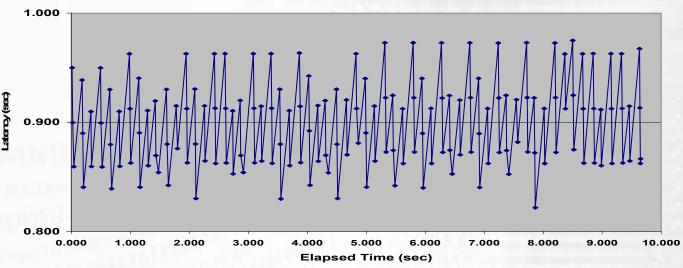
- Short resource request cycle, but is not dedicated
- Pay for resources used (by the packet)
- Resources can be shared by all on a party line
- Provides a 10 to 100x efficiency (cost) advantage
- Can cost effective non-dedicated resources provide high speech quality for a party line service in oceanic airspace?
- Inmarsat's Mobile Packet Data Service (MPDS) exists, can be tested now, precursor to future generation BGAN*

*Inmarsat announced planning timeline pre-operational trials of Aero-BGAN Safety services circa. 2010 during Datalink Users Forum Meeting Feb. 3-5, 2004 San Francisco, CA

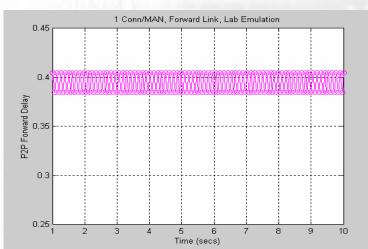
Measurement, Simulation, Lab Emulation Synergy


- Experiment
 - Experience and measure VoIP over a packet switched system
 - Validate simulation
 - Includes Internet traversal
 - Limited to single terminal with unknown channel loading
 - Unclear how much of the MPDS SDM* is actually implemented
- OPNET Simulation
 - Based on MPDS SDM to known extent in the simulation
 - Satellite links modeled without the Internet
 - Can extend our analysis beyond SDM for additional capabilities that may be required
 - Capable of modeling multiple terminals
 - Capable of modeling a variety of traffic mixes with control of background traffic
- Basis for hardware/software emulation in laboratory for use in qualitative evaluation of various party line architectures

*Inmarsat MPDS System Design Manual (SDM) provided under NDA



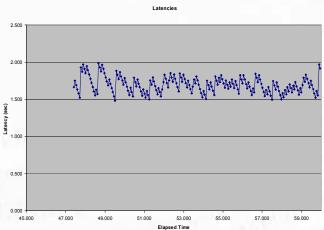
VoIP over Inmarsat's MPDS

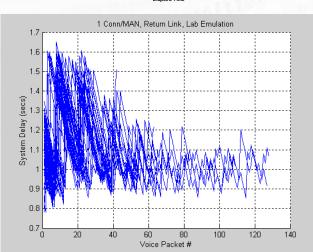


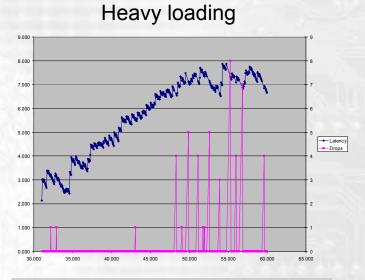
Forward Link

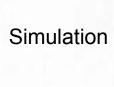
Forward Direction Latency

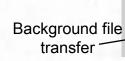
- Above: measured packet by packet latency over POR
- Below: simulated latency
- Latency difference due in large part to long terrestrial N.Z. to U.K. path
- Jitter difference unclear but perhaps due to delta between SDM and MPDS implementation or public Internet contribution

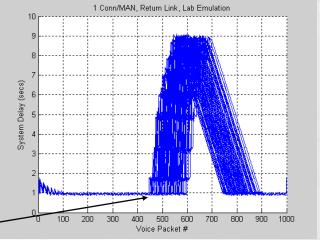




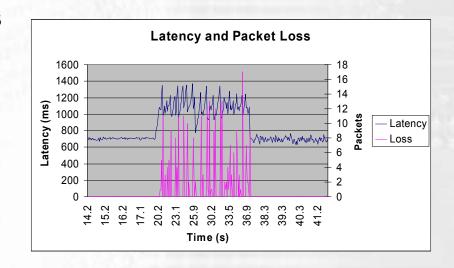

Return Link


Light loading





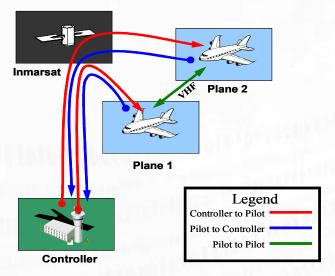
Measurement

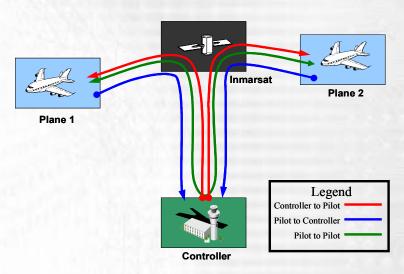


AirTrafficManagement

QoS

- Initial steady voice stream
 - 700 ms latency, < 50 ms jitter
- Background file transfer floods link
 - Higher latency and jitter
 - Packet loss
- With link still flooded QoS mechanism turned on
 - 700 ms average latency
 - Jitter 100-150 ms
 - No packet loss

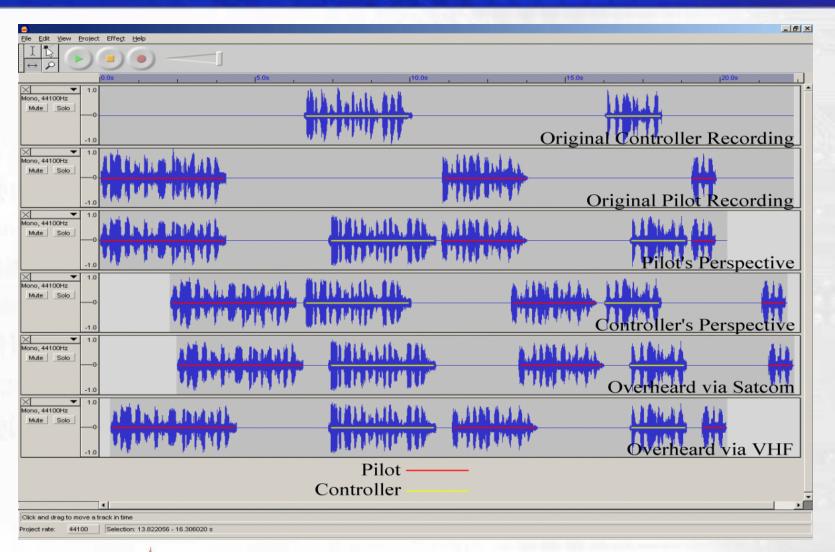




Qualitative Evaluation of Party Line Methods

VHF Between Planes

Satcom Between Planes



- Hardware/software emulation of the satellite link based on experiments
- Two latency scenarios considered
 - Current MPDS
 - Improved 'BGAN' values
- Recordings were made representing the asymmetric latency from each participants viewpoint
 - To be heard at the end of the briefing
- An informal lab exercise of the VHF configuration was carried out with in house ex-controllers, and former and current pilots
 - Favorable responses were received for oceanic application despite the noticeable satellite delay.

Recorded Voice Waveforms

Conclusions

- An affordable packet based approach and transition path for offering oceanic and remote party line voice has been identified
- Tests of VoIP over MPDS show promising voice performance when the links are lightly loaded
 - QoS mechanisms, such as may be expected in BGAN, could be used to improve voice quality in more heavily loaded
- Simulations, validated by test results, were used to determine voice capacity of MPDS and explain aspects of the VoIP results
 - Future simulations could model the performance of BGAN QoS alternatives
- Laboratory software/hardware emulation based on testing and simulations was used in the qualitative evaluation of party line concepts
- A human in the loop, voice quality study is needed to evaluate human factors issues for different party line scenarios and architectures.

